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The Sobolev gradient technique has been discussed previously in this journal as an efficient
method for finding energy minima of certain Ginzburg–Landau type functionals [S. Sial, J.
Neuberger, T. Lookman, A. Saxena, Energy minimization using Sobolev gradients: applica-
tion to phase separation and ordering, J. Comput. Phys. 189 (2003) 88–97]. In this article a
Sobolev gradient method for the related time evolution is discussed.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

An important approach to the solution of PDEs is to seek a critical point of a functional, constructed so that the equation can
be considered to be solved when the functional is minimal. The recent theory of Sobolev gradients [2] gives a unified approach
for such problems, both in function spaces and in finite-dimensional approximations to such problems. Sobolev gradients
have been used for ODE problems [2,3] in a finite-difference setting, PDEs in finite-difference [3] and finite-element settings
[4], minimizing energy functionals associated with Ginzburg–Landau models in finite-difference [1] and finite-element [5,6]
settings, the electrostatic potential equation [7], nonlinear elliptic problems [8], semilinear elliptic systems [9], simulation of
Bose–Einstein condensates [10], inverse problems in elasticity [11] and groundwater modelling [12].

Sobolev gradients [2] have been discussed before in this journal [1] as a method for energy minimization of Ginzburg–
Landau functionals related to phase separation and ordering. In this article we would like to extend that approach to the
related Ginzburg–Landau time evolution problems.

First, we briefly review the theory of Sobolev gradients in a finite-difference setting applied to minimizing a Ginzburg–Lan-
dau free energy functional. This theory leads to a steepest descent method in an appropriate Sobolev space as in [1]. We then
consider two possible approaches to the related time-dependent problem. The numerical results for one approach are then
presented. A comparison of Sobolev gradient method is made with Newton’s method. Results are reported for numerical
experiments. All numerical experiments are carried out on an Intel Xeon 3.2 GHZ dual processor machine with 2 GB RAM.

2. Model A time evolution

The minimization of the Model A Ginzburg–Landau free energy functional
. All rights reserved.
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has been considered in [1]. The static and dynamical properties of this model have been extensively studied, primarily in
numerical work related to coarsening and growth of domains [13–15].

In the continuous case, the related Ginzburg–Landau time evolution is
ut ¼ �rFðuÞ ð2Þ
which on the interior of the system is
ut ¼ u� u3 þr2u: ð3Þ
The method suggested for evolving systems from one time to another in the primary reference for Sobolev gradients [2] is as
follows. Form a functional
/ðuÞ ¼ u� f þ dt

2
ðu� u3 þr2uÞ þ dt

2
ðf � f 3 þr2f Þ

���� ����2

; ð4Þ
where f represents the system at a time t and u represents the system at a time t þ dt . The numerical version of this problem
will involve second-order operators acting in H2

2. When this functional is minimized sufficiently, the system is considered to
have evolved to the next time step. We will follow this approach with the modification that we consider the minimization of
a functional
/ðuÞ ¼ jju� f þ dtðu� u3 þr2uÞjj2 ð5Þ
for a fully implicit scheme.

2.1. Numerical problem in one-dimension and related functional

Consider the problem
ut ¼ u� u3 þ jr2u ð6Þ
on the interval [0,10] with Dirichlet boundary conditions.
We will first consider a one-dimensional numerical problem, the theory for the two and three-dimensional cases is sim-

ilar. We work with a finite-dimensional vector u 2 RM on a uniform rectangular grid. We will denote by L2 or H2
0 the vector

space RM equipped with the usual inner product hu;vi ¼
P

iuðiÞvðiÞ. The operators D0;D1;D11 : RM ! RM�2 are defined by
D0ðuÞðiÞ ¼ uðiþ 1Þ; ð7Þ

D1ðuÞðiÞ ¼
uðiþ 2Þ � uðiÞ

2dx
; ð8Þ

D11ðuÞðiÞ ¼
ðuðiþ 2Þ � 2uðiþ 1Þ þ uðiÞÞ

d2
x

ð9Þ
for i ¼ 1;2; . . . ;M � 2 and where dx ¼ 10=ðM � 1Þ is the spacing between the nodes. D0 just picks up the points in the grid
which are not on the endpoints. D1 and D11 are standard central difference formulas for estimating the first and second deriv-
atives. The choice of difference formula is not central to the theoretical development in this paper, other choices would also
work.

The numerical version of the problem of evolving from one time t to a time t þ dt is to solve
D0ðð1� dtÞuþ dtu3 � f Þ � dtD11ðuÞ ¼ 0; ð10Þ
where f in the equation is u at the previous time and u is the u desired at the next time level. We can put the solution of this
problem another in terms of minimizing a functional via steepest descent. Define L 2 RM�2 by
LðuÞ ¼ D0ðð1� dtÞuþ dtu3 � f Þ � dtD11ðuÞ ð11Þ
which is zero when the we have the desired u. The functional
FðuÞ ¼ hLðuÞ; LðuÞi=2 ð12Þ
has a minimum of zero when LðuÞ is zero so we will look for the minimum of this functional.

2.2. Gradients and minimization

The gradient rFðuÞ 2 RM of a functional FðuÞ in L2 is found by solving
Fðuþ hÞ ¼ FðuÞ þ hrFðuÞ;hi þ Oðh2Þ ð13Þ
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for test functions h. The gradient points in the direction of greatest increase of the functional. The direction of greatest de-
crease of the functional is �rFðuÞ. This is the basis of steepest descent algorithms.

One can reduce FðuÞ by replacing an initial u with u� krFðuÞwhere the step size k is a positive number. This can be done
repeatedly until either FðuÞ or rFðuÞ is less than some specified tolerance. We desire a finite-dimensional analogue to the
original problem in which there are fixed values of u on the endpoints of the interval. So, we use a projection
p : RM ! RM which projects vectors in RM onto the subspace in which the first and last entries of vectors are zero. Rather than
using rFðuÞ, we will use prFðuÞ. In this particular case,
Table 1
Numeri

k

L2

0.00000
–
–
–

prFðuÞ ¼ p½ð1� dt þ 3dtu2ÞDt
0LðuÞ � dtD

t
11LðuÞ� ð14Þ
gives the desired gradient for steepest descent in L2. The CFL condition [16] implies a problem with the steepest descent ap-
proach in L2. When the grid is made finer, or if we go from a one-dimensional to a two-dimensional or three-dimensional
version of the problem, the step size k will have to be reduced. The Sobolev gradient technique avoids these problems.

The Sobolev gradient approach to the problem of minimizing functionals is to do the minimization in Sobolev spaces
which are appropriate to the problem. We define two such spaces in which the minimization can be compared to minimi-
zation in L2. We are prompted to consider the space H2

2 which is RM with the inner product
ðu; vÞ ¼ hD0ðuÞ;D0ðvÞi þ hD1ðuÞ;D1ðvÞi þ hD11ðuÞ;D11ðvÞi ð15Þ
because LðuÞ and FðuÞ have D11 in them. We also define bH2
2 as RM with the inner product
ðu; vÞ ¼ ð1� dtÞ2hD0ðuÞ;D0ðvÞi þ hD1ðuÞ;D1ðvÞi þ ðdtÞ2hD11ðuÞ;D11ðvÞi ð16Þ
because this takes into account the coefficients of D1 and D0 in LðuÞ and FðuÞ.
The desired Sobolev gradients pPrFðuÞ in H2

2 and bH2
2 are found by solving
pðDt
0D0 þ Dt

1D1 þ Dt
11D11ÞpPrFðuÞ ¼ prFðuÞ; ð17Þ

pðð1� dtÞ2Dt
0D0 þ Dt

1D1 þ ðdtÞ2Dt
11D11ÞpPrFðuÞ ¼ prFðuÞ; ð18Þ
respectively.
For the two-dimensional case the corresponding operator L can be written as
LðuÞ ¼ D0ðð1� dtÞuþ dtu3 � f Þ � dtD11ðuÞ � dtD22ðuÞ ð19Þ
and we consider a square domain with edges of length 10 with Dirichlet boundary conditions. The operator D0 : RM�N !
RM�2�N�2 picks out the nodes which are not on the edge of the grid. The operators D1;D2;D11;D22 : RM�N ! RM�2�N�2 are anal-
ogous to the operators in one-dimension and use central differences to estimate derivatives in the x and y directions, replac-
ing the nodal spacing in the x direction dx with the nodal spacing in the y direction dy when appropriate.

For the three-dimensional case the operator L is
LðuÞ ¼ D0ðð1� dtÞuþ dtu3 � f Þ � dtD11ðuÞ � dtD22ðuÞ � dtD33ðuÞ ð20Þ
and we consider a cubic domain with edges of length 10 with Dirichlet boundary conditions. The operator D0 : RM�N�P !
RM�2�N�2�P�2 picks out the nodes which are not on the edge of the grid. The operators
D1;D2;D11;D22 : RM�N�P ! RM�2�N�2�P�2 are analogous to the operators in one-dimension and use central differences to esti-
mate derivatives in the x; y and z directions, replacing the nodal spacing in the x direction dx with dy and dz when appropriate.

Numerical experiments for solution of time evolution model A were conducted as follows. Systems of M;M2 and M3 nodes
were set up with u ¼ 0:0 on all nodes except at edge nodes where u ¼ 0:1 and u ¼ �0:1, respectively in the one-dimensional
case, u ¼ 0:1 on the vertical edges and u ¼ �0:1 on the horizontal edges of the plane in the two-dimensional case, and
u ¼ 0:1 on the top and bottom faces and u ¼ �0:1 on the front, back, left and right faces of the cube in the three-dimensional
case respectively. The internodal spacing d was the same in each direction. The value of j was set to 1 for all the experiments.
The function u was then evolved according to the first-order implicit scheme. The updated value of u for a given time step
was considered to be correct when the infinity norm of pLðuÞ was less than 10�7. We set dt ¼ 0:4 for the time increment. For
the gradients in H2

2 and bH2
2 we used the same step size regardless of the nodal spacing. The total number of minimization

steps for 15 time steps, the largest value of k that can be used and CPU time were recorded in Tables 1–3.
cal results of steepest descent in L2;H
2
2 ;
bH2

2 using dt ¼ 0:4 over 15 time steps using second-order operators in the one-dimensional case.

Iterations CPUs M

H2
2

bH2
2 L2 H2

2
bH2

2 L2 H2
2

bH2
2

018 0.9 0.7 >261264100 754 284 >64003.4 132.9 61.35 801
0.9 0.7 – 765 282 – 1118.7 503.2 1601
0.9 0.7 – 772 281 – 10100.5 4660.7 3201
0.9 0.7 – 778 280 – 92207.6 32941.2 6401



Table 2
Numerical results of steepest descent in L2;H

2
2 ;
bH2

2 using dt ¼ 0:4 over 15 time steps using second-order operators in two-dimensional case.

k Iterations CPUs M

L2 H2
2

bH2
2 L2 H2

2
bH2

2 L2 H2
2

bH2
2

0.023 0.9 0.7 8132 1450 791 0.137 0.215 0.114 16
0.0018 0.9 0.7 104085 1628 1596 13.3 4.66 2.79 32
0.00012 0.9 0.7 1560337 789 271 940.9 112.53 50.48 64
0.000007 0.9 0.7 >1739560 764 256 >4971.4 2307.3 994.7 128

Table 3
Numerical results of steepest descent in L2;H

2
2 ;
bH2

2 using dt ¼ 0:4 over 15 time steps using second-order operators in three-dimensional case.

k Iterations CPUs M

L2 H2
2

bH2
2 L2 H2

2
bH2

2 L2 H2
2

bH2
2

0.22 0.9 0.4 1034 507 356 0.0254 0.174 0.105 8
0.014 0.9 0.4 16984 3227 1768 13.3 18.92 10.4 16
0.0009 0.9 0.4 264612 3958 2118 2234.14 863.37 462.2 32
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From the tables we see that the results in H2
2 are far better than L2 and results in the space bH2

2 are the best. It is not clear to
us why the number of iterations in 2 for the space bH2

2 are not monotone.

2.3. Using the associated functional

Here we suggest another approach, in order to avoid second-order operators. Once again consider the problem
ut ¼ u� u3 þ jr2u ð21Þ
with Dirichlet boundary conditions. The associated functional for a finite-dimensional version of the problem with discrete
time steps is given by
GðuÞ ¼ hD0ðu2=2� fuÞ;1i þ dtFðuÞ ð22Þ
where
FðuÞ ¼ hD0ðu4=4� u2=2Þ;1i þ j
2

X
i

hDiðuÞ;DiðuÞi ð23Þ
and we wish to minimize the functional GðuÞ until prGðuÞ is smaller than some set tolerance. GðuÞ has a minimum when the
gradient
prGðuÞ ¼ p u� f þ dtu3 � dtu� dt

X
i

Dt
i Diu

 !
ð24Þ
is equal to zero. And this might be considered the condition for finding u at the next time step.
In one-dimension, this functional becomes
GðuÞ ¼ hD0ðu2=2� fuÞ;1i þ dthD0ðu4=4� u2=2Þ;1i þ dt
j
2
hD1ðuÞ;D1ðuÞi: ð25Þ
We want to minimize this functional in L2;H
2
1, in bH2

1 and also in a new inner product space _H2
1, defined via
ðu;vÞ ¼ ð1� dtÞhu;vi þ jdthD1u;D1vi: ð26Þ
We think of the M nodes as dividing up [0,10] into M � 1 subintervals. D0 : RM ! RM�1 estimates u on the intervals by
D0ðuÞðiÞ ¼
1
2
ðuðiÞ þ uðiþ 1ÞÞ ð27Þ
for i ¼ 1;2; . . . ;M � 1. D1 : RM ! RM�1 estimates a first derivative on the intervals by
D1ðuÞðiÞ ¼
1
dx
ðuðiþ 1Þ � uðiÞÞ ð28Þ
for i ¼ 1;2; . . . ;M � 1 and where dx is the internodal spacing.
In two-dimensions the functional is
GðuÞ ¼ hD0ðu2=2� fuÞ;1i þ hD0ðu4=4� u2=2Þ;1i þ j
2
hD1ðuÞ;D1ðuÞi þ

j
2
hD2ðuÞ;D2ðuÞi: ð29Þ
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We think of the nodes as dividing the grid into ðM � 1Þ � ðN � 1Þ rectangles. D0 : RM;N ! RM�1;N�1 estimates the value of u on a
rectangle by averaging the value of u on the four corners of the rectangle. D1 : RM;N ! RM�1;N�1 estimates the derivative of u in
the x direction on a rectangle by taking a first-order difference in the x direction along two edges of the rectangle (analogous
to the one-dimensional case) and averaging. D2 : RM;N ! RM�1;N�1 does the same in the y direction.

The three-dimensional version of the problem is given by
Table 4
Numeri
one-dim

k

L2

0.00000
–
–
–
–

Table 6
Numeri

k

L2

0.95
0.42
0.12
0.031

Table 5
Numeri
two-dim

k

L2

0.0075
0.0018
0.00085
0.00046
GðuÞ ¼ hD0ðu2=2� fuÞ;1i þ hD0ðu4=4� u2=2Þ;1i þ j
2
hD1ðuÞ;D1ðuÞi þ

j
2
hD2ðuÞ;D2ðuÞi þ

j
2
hD3ðuÞ;D3ðuÞi: ð30Þ
We think of the M � N � P nodes as dividing the grid into ðM � 1Þ � ðN � 1Þ � ðP � 1Þ cubes. D0 : RM;N;P ! RM�1;N�1;P�1 esti-
mates the value of u on a cube by averaging the value of u on the eight corners of the cube. D1 : RM;N;P ! RM�1;N�1;P�1 estimates
the derivative of u in the x direction on a cube by taking a first-order difference in the x direction along four edges of the cube
(analogous to the one-dimensional case) and averaging. D2;D3 : RM;N;P ! RM�1;N�1;P�1 do the same in the y and z directions,
respectively.

Numerical experiments for solution of time evolution model A were conducted as follows. Systems of M;M2 and M3 nodes
were set up with u ¼ 0:0 on all nodes except at edge nodes where u ¼ 0:1 and u ¼ �0:1 respectively in the one-dimensional
case, u ¼ 0:1 on the vertical edges and u ¼ �0:1 on the horizontal edges of the plane in the two-dimensional case, and
u ¼ 0:1 on the top and bottom faces and u ¼ �0:1 on the front, back, left and right faces of the cube in the three-dimensional
case respectively. And d was the internodal spacing in each direction. The value of j was set to 1 for all the experiments. All
the systems were evolved according to the first-order implicit scheme. The updated value of u for a given time step was con-
sidered to be correct when the infinity norm of pGðuÞ was less than 10�7. We set dt ¼ 0:4 for the time increment. For the
gradients in H2

1;
bH2

1 and also in _H2
1 we used the same step size regardless of the nodal spacing. But the gradient in the Sobolev

space H2
1 does not work in the three-dimensional case therefore we omit its results. Newton’s method for the solution of

nonlinear system of equations is used and the results are compared with Sobolev gradient technique in one and two-dimen-
sional cases. The total number of minimization steps for 15 time steps, the largest value of k that can be used and CPU time
are given in Tables 4–6.

We note that the finer the spacing the less CPU time the Sobolev gradient technique uses in comparison to the usual
steepest descent method. The step size for minimization in L2 has to decrease as the spacing is refined. From the tables
cal results of Newton’s method compared with steepest descent in L2;H
2
1;
bH2

1;
_H2

1 using dt ¼ 0:4 over 15 time steps using the associated functional in the
ensional case.

Iterations CPUs M

H2
1

bH2
1

_H2
1 L2 H2

1
bH2

1
_H2

1 Newton L2 H2
1

bH2
1

_H2
1 Newton

075 0.9 0.9 0.78 >24700873 277 277 141 557 >50880 529.9 427.17 228.89 176.337 12801
0.9 0.9 0.78 – 278 278 141 1037 – 1717.03 1235.3 639.48 497.13 19201
0.9 0.9 0.78 – 278 278 142 1711 – 3804.7 2505.8 1286.14 1230.7 25601
0.9 0.9 0.78 – 280 280 142 3847 – 12241.1 7990.76 4155.47 6581.56 38401
0.9 0.9 0.78 – 279 279 142 6789 – 27314.8 20696.4 10189.6 21261.3 51201

cal results of steepest descent in L2; bH2
1;

_H2
1 using dt ¼ 0:4 over 15 time steps using the associated functional in the three-dimensional case.

Iterations CPUs MbH2
1

_H2
1 L2

bH2
1

_H2
1 L2

bH2
1

_H2
1

0.9 0.7 266 253 173 0.0062 0.056 0.018 8
0.9 0.7 411 273 165 0.088 0.34 0.245 16
0.9 0.7 1563 275 164 6.18 13.34 8.5 32
0.9 0.7 6308 275 164 565.42 525.7 349.9 64

cal results of Newton’s method compared with steepest descent in L2;H
2
1;
bH2

1;
_H2

1 using dt ¼ 0:4 over 15 time steps using the associated functional in the
ensional case.

Iterations CPUs M

H2
1

bH2
1

_H2
1 L2 H2

1
bH2

1
_H2

1 Newton L2 H2
1

bH2
1

_H2
1 Newton

0.35 0.9 0.78 22913 776 268 136 53 22.6 28.13 10.21 5.44 3.34 128
0.35 0.9 0.78 95642 781 267 135 53 917.03 641.02 235.7 126.8 96.2 256
0.35 0.9 0.78 202593 780 270 134 53 6068.7 3003.9 928.96 478.24 373.28 384
0.35 0.9 0.78 374402 784 275 149 53 32073.7 9220.5 2553.4 1517.96 1942.07 512
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one can see that the results in bH2
1 are far better than L2 and results in the space _H2

1 are better than the Newton’s method in the
one and two-dimensional cases.

3. Summary and conclusions

We have presented minimization schemes for the time evolution model A Ginzberg–Landau functionals based on the
Sobolev gradient technique [2,17]. The Sobolev gradient technique is computationally more efficient than the usual steepest
descent method as the spacing of the numerical grid is made finer and accordingly, the dimension of the problem is in-
creased. We have also found the Sobolev gradient technique more efficient than Newton’s method for this problem. Our re-
sults indicate that Sobolev gradient techniques may offer distinct advantages in certain cases. Upon choosing an optimal
inner product with respect to which the Sobolev gradient works better, one can improve the performance of Sobolev gradient
techniques. What the absolutely optimal inner product might be is still an open question and it is possible that different in-
ner products might not make large differences in computational performance in all cases.
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